Critical Thresholds in 2D Restricted Euler-Poisson Equations

نویسندگان

  • Eitan Tadmor
  • Hailiang Liu
چکیده

We provide a complete description of the critical threshold phenomena for the two-dimensional localized Euler-Poisson equations, introduced by the authors in [17]. Here, the questions of global regularity vs. finite-time breakdown for the 2D Restricted Euler-Poisson solutions are classified in terms of precise explicit formulae, describing a remarkable variety of critical threshold surfaces of initial configurations. In particular, it is shown that the 2D critical thresholds depend on the relative size of three quantities: the initial density, the initial divergence as well as the initial spectral gap, that is, the difference between the two eigenvalues of the 2× 2 initial velocity gradient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper-thresholds for Shock Formation in Two-dimensional Weakly Restricted Euler-poisson Equations

The multi-dimensional Euler-Poisson system describes the dynamic behavior of many important physical flows, yet as a hyperbolic system its solution can blow up for some initial configurations. This paper strives to advance our understanding on the critical threshold phenomena through the study of a two-dimensional weakly restricted Euler-Poisson (WREP) system. This system can be viewed as an im...

متن کامل

Thresholds in three-dimensional restricted Euler–Poisson equations

This work provides a description of the critical threshold phenomenon in multi-dimensional restricted Euler–Poisson (REP) equations, introduced in [H. Liu, E. Tadmor. Spectral dynamics of the velocity gradient field in restricted fluid flows, Comm. Math. Phys. 228 (2002) 435–466]. For three-dimensional REP equations, we identified both upper thresholds for the finite-time blow up of solutions a...

متن کامل

Spectral Dynamics of the Velocity Gradient Field in Restricted Flows

We study the velocity gradients of the fundamental Eulerian equation, ∂tu+ u · ∇u = F , which shows up in different contexts dictated by the different modeling of F ’s. To this end we utilize a basic description for the spectral dynamics of ∇u, expressed in terms of the (possibly complex) eigenvalues, λ = λ(∇u), which are governed by the Ricatti-like equation λt + u · ∇λ+ λ2 = 〈l,∇Fr〉. We focus...

متن کامل

Critical Thresholds in Multi-dimensional Restricted Euler Equations

Abstract. Using the spectral dynamics, we study the critical threshold phenomena in the multidimensional restricted Euler (RE) equations. We identify sub-critical and sup-critical initial data for all space dimensions, which extends the previous result for the 3D and 4D restricted Euler equations. Our result suggests that: if the number of dimensions is odd, the finite time blowup is generic; i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2003